

RED DE MAIZ TARDIO

¿Cómo el ambiente y el manejo impactan en el rendimiento?

* Publicado en Agricultural Systems 146 (2016) 11-19.

OBJETIVOS

- Identificar variables de manejo o del ambiente relevantes para el rendimiento del maíz tardío
- Cuantificar la magnitud de los efectos de las variables relevantes

MATERIALES Y MÉTODOS

- 23 ensayos en las campañas 2012/2013 y 2014/2015 en localidades alrededor de la zona núcleo de producción de maíz (Figura 1).
- En cada ensayo el diseño fue en bloques completos al azar con 2 o 3 repeticiones,
- •Se analizaron diferentes variables predictoras del rendimiento (Tabla 2)

Figura 1. Distribución de los sitios de experimentación

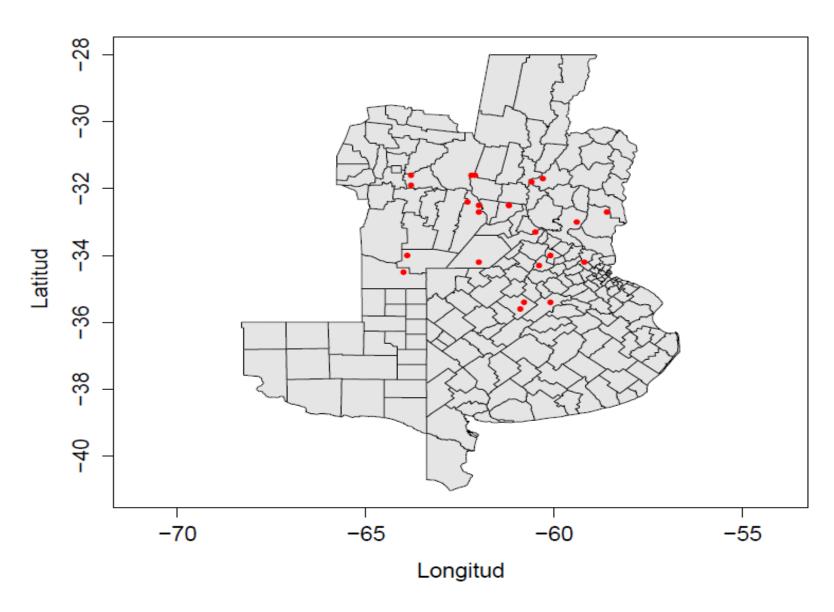


Tabla 2. Variables predictoras analizadas

Código	Fecha de siembra	Densidad (pl m ⁻²)	M.O. (%)	N a la siembra (kg ha ⁻¹)	P suelo (ppm)	Tipo de suelo	Napa	Lluvias (mm)
Cr_13	01-Dic	6.9	2.74	127	10	IIIs	0	382
So_13	24-Dic	5.9	3.41	127	9	IIIs	0	296
La_13	20-Dic	6.8	2.07	169	19	llc	1	450
9J_13	20-Nov	6.3	2.73	78	8.3	III	1	562
Bu_13	30-Dic	6.4	3.82	65	17	I	1	392
EF_13	03-Ene	6.3	2.85	81	32	VIws	1	389
RII_13	24-Dic	6.5	2.11	180	20	IIIc	0	361
25M_13	20-Dic	6.5	2.01	142	5	Vles	1	478
Ur_13	24-Dic	6.2	4.34	123	12	III	0	696
MJM_14	01-Dic	6.5	2.63	266	68	lls	0	585
No_14	14-Dic	6.5	2.51	437	47	llc	1	497
MJ_14	02-Dic	6.5	2.87	408	62	I	1	650
Jo_14	07-Dic	5.5	0.97	163	12	llc	1	518
9J_14	06-Dic	6.1	2.60	231	7	Illws	0	846
LP_14	15-Dic	6.5	1.73	463	31	llep	1	754
Co_14	06-Ene	7.0	2.70	372	42	llep	1	566
RII_14	19-Dic	5.4	2.03	144	22	IIIc	0	554
Lab_14	17-Dic	6.1	1.52	182	29	Illsc	1	663
Go_14	12-Dic	7.6	2.41	211	16	Illwe	1	1095
Bu_14	20-Dic	6.0	2.46	141	11.5	II	1	666
EF_14	17-Dic	6.0	2.47	110	34	V	1	675
Per_14	16-Dic	6.6	3.50	196	58	llep	0	986
S_14	14-Dic	6.8	3.14	182	17		0	1156

RESULTADOS

Tabla 3. Variables incluidas y parámetros estadísticos de los 5 mejores modelos y del modelo nulo (K; sin efectos fijos). El mejor modelo incluyo la densidad de siembra, disponibilidad de nitrógeno y la presencia de napa.

Modelo	Manejo				Ambiente					
	Densidad	Fecha de siembra	P suelo	N disponible a la siembra	Clase de suelo	Lluvias	Napa	R^2_{m}	R_{c}^{2}	AIC
Α	X			X			X	0.38	0.91	662
В				X			X	0.34	0.91	623
С	X	X		X			X	0.37	0.91	624
D				X		X	X	0.34	0.91	625
Е			X	X			X	0.34	0.91	625
K								-	-	632

Figura 4. Impacto la disponibilidad de nitrógeno sobre el rendimiento. Se encontró una respuesta inicial de 22 kg ha⁻¹ por kg N ha⁻¹ disponible a la siembra; con un umbral de respuesta de 140 kg N ha⁻¹_{SUELO+FERTILIZANTE} en el rango de 65 a 437 kg N ha⁻¹. A su vez los genotipos tuvieron distinta respuesta al N, esta interacción se incluyó como efecto aleatorio dentro del modelo.

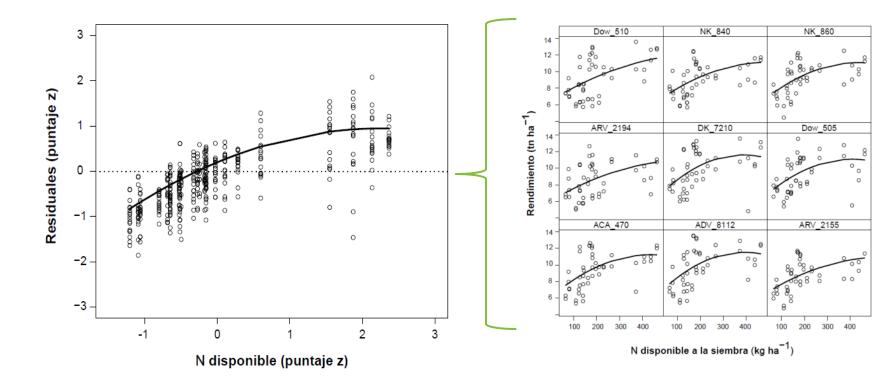


Figura 2. Efecto del genotipo sobre el rendimiento. Al genotipo se lo incluyó dentro del modelo como un factor aleatorio.

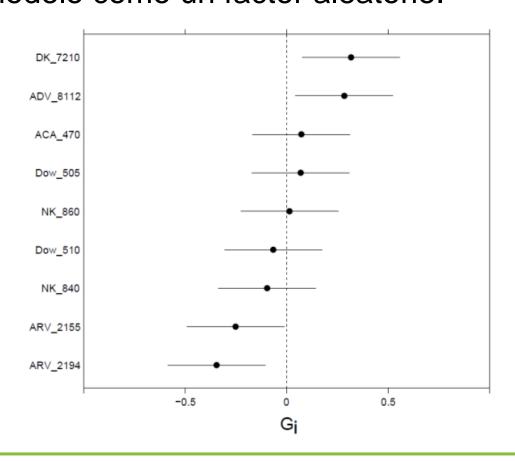


Figura 3. Efecto de densidad sobre el rendimiento. Hay un efecto positivo de 1000 kg ha⁻¹ por cada 10 mil pl ha⁻¹ dentro de un rango 54 a 76 mil pl ha⁻¹.

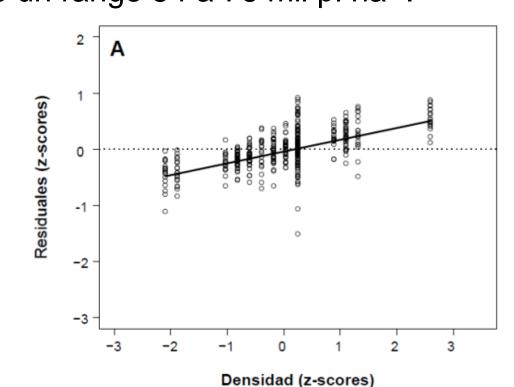
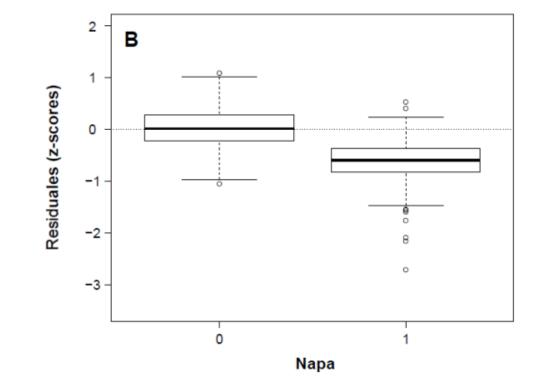



Figura 5. Impacto de la presencia (1) o ausencia (0) de napa. Con presencia de napa el rinde fue 1360 kg ha⁻¹ inferior

CONCLUSIONES

- El genotipo, el manejo del N y de la densidad son relevantes para maximizar el rendimiento en maíz tardío
- El tipo de suelo y las precipitaciones durante el ciclo tuvieron poca influencia sobre el rendimiento.
- El efecto negativo de la napa demuestra que el agua podría estar en exceso en siembras tardías en ambientes como los analizados
- El N y el genotipo tienen que manejarse en conjunto, ya que los genotipos responden distinto al N disponible.

Gambin, B. ¹; Coyos, T.A.²; Di Mauro, G.¹; Borrás, L.¹; Garibaldi, L.³ - (¹) FCAGR UNR; (²) AAPRESID; (³) CONICET